(SOLUTIONS)
CHINESE REMAINDER THEOREM

INTERMEDIATE GROUP - FEBRUARY 12, 2017

Warm Up

Theorem 1. Suppose m and n are two different prime numbers, and ¢ is an integer.
If m|c and nlc, then mn|c.

Problem 1. Give values of m,n and ¢ where Theorem 1 can be applied.
M=2 ., w=5 , =20
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Problem 2. Explain why Theorem 1 is true,
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Problem 3. Suppose we picked two prime numbers 3 and 5 and decided to make a
table expressing the integers from 0 to 15 in mod 3 and mod 5.

For example, to find out where 7 belongs on the table, we would first find what 7 is in
mod 3 and mod 5.

As7=1 mod 3and 7 =2 mod 5, we would put 7 in the row corresponding to 1 mod 3
and the column corresponding to 2 mod 5. This is shown in the table below.

Fill out the rest of the table with integers from 0 to 15.

mod 5

mod3 | g |w [\ | 73] 4

2 (5 | W72 | % |

Problem 4. Fill cut the following tables. Can we make a table when we pick two
integers that have a factor in common?

mod 7

mod3 | 1 |3 |y | te]lw| &|w [
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mod 6

0 OJ’L ’.L!cs %1‘{3
mod 2

1 ‘}‘% %‘% S‘;‘E

Problem 5. Notice that when we pick two prime numbers, /m and » to create the table
corresponding to mod m and mod n, we can uniquely identify every number from 0
to m - n -~ 1 by using the row and column they represent.

For example, there is only one number in the integers from 0 to 15 that is congruent to
2 mod 3 and 3 mod 5. Using the table you filled out in Problem 3, find this number.

¥ = 2weod B
= D ownod B

Problem 6. Using the table from Problem 4, find a number between 0 and 20 that
gives a remainder of 5 when we divide by 7 and a remainder of 2 when we divide by

3. %%%%M&% v = 2 vwod B
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Problem 7. Suppose Lev was trying to remember how many books he had brought
to school with him. He knew that he had less than 12 books and that he would have
0 books. remaining when he counted them by 2’s and 4 books remaining whe

counted them by 6’s. Can we determine fromﬂ:—l: mformon above how many books
he has? -
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Chinese Remainder Theorem
Problem 8. Suppose we pick two prime numbers, n; and n,. Prove that the system of

equations

r =ry mod ny

{sc =r modmy

has a unique solution for values of z mod n; - n,.

To prove the above, we must show that if we have two numbers z; and z, that both
satisfy the system of equations, then z; = z» mod 1 - na.

(1) Suppose that z; and z; both satisfy the system of equations. This would mean

that
7 =_ lmod ™
.’L‘l = ‘c‘} mod T
and

T = ‘{\\ mod T
Zo e mod ny
(2) This implies that

{xl =z modn

T =@y mod ng
because
=¥, mod ny = x; mod ng
and
1= ¥  modmng =z mod ng.
(3) Thus
L — 2Ty = G mod 7
Ty — & = Q mod Tia ’

which means that n;/(z1 — z2) and ns|(z1 — z2).
(4) From Theorem 1, we know that this implies that
Vi Y\ (2 — 32),

80 )
Tl — T3 = 0 mod T - g,
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(5) Finally, by adding x; to both sides of the equation, we obtain
21 =_%s_  mod ng .
Theorem 2. Chinese Remainder Theorem

Suppose we pick & prime numbers, n,ng, ..., ;. The system of equations

x =r modm
z =1y mod ng
T =71, mod ng
has a unique solution for values of z mod n; - ng - ... - 1.

Problem 9. Consider the system of equations

z =2 modll
z =3 modl13.
z =3 mod]17

How many solutions between 0 and 2430 does the system of equations have?
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 Problem 10. True/False: The system of equations has exactly one solution.

z =1 mod?2
z =1 mod3.
z =2 mod?7

Justify your answer.

Failse. v | X ‘
Dade it art WEEROATUY TN SIRTVO
*E 3%, W42 FMY= 3], A BT e 2R A e
Problem 11. True/False: The system of equations has exactly one solution between = \e™> 3 ...
Oandng -ng-ng— L.
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Finding Solutions for the Chinese Remainder Theorem

So far, we have shown that there is a unique solution to a Chinese Remainder Theo-
rem problem, but we have not discussed how to obtain the solution.

Suppose we're given the following system of equations:

T =7 modmn
T =719 modng
T =7, mod 1y
Then the solution z has the form
T=cr;tery+ .. +ery mod ng-ng .-y

where

=1 modn;

=0 modn; (i#7)
Problem 12. Find the least positive integer  where

z =1 mod?7
z =7 modll’

(1) z must have the form:
g=c-1+e % mod7- 11
(2) To find ¢;, we must find a number so that

cg=1 modT7
c; =0 mod 11.
cr=_ %2
(3) To find ¢;, we must find a number so that ¢, 8 O s
2\ waodk B
o=_5%

(4) This givesz =_ 24 .
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Problem 13. A band of 7 pirates stole a sack of gold coins. When they tried to divide
the fortune into equal portions, 2 coins remained. In the ensuing brawl over who
should get the extra coins, two pirates were killed. The wealth was redistributed, but
this time, and equal division left 3 coins. Again an argument developed in which two
more pirates were killed. But now the total fortune was evenly distributed among the
survivors. What was the least number of coins that could have been stolen?

Write a system of equations to represent the question above and solve it using the
algorithm we learned.
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Problem 14. Solve the system

z =2 mod3

z =3 modb5.
T =2 modf7
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Problem 15. Explain why our algorithm for finding solutions to the Chinese Remain-
der Theorem works. If z has the form .

T =cr;+caro+ ..+ opry mod nyg g .-y

why must
=1 modn;
and
=0 modn; (i#j)7
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T'wo numbers are coprime if their greatest common denominator is 1
So far, we have shown that the Chinese Remainder Theorem applies to system of

equations moduli prime numbers. However, it can be extended to moduli which are
coprime to each other.

Problem 16. Solve the system
¢z =1 mod4

T =3 modb.
z =2 mod7
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Problem 17. Based on your understanding of the Chinese Remainder Theorem, ex-

plain why the Chinese Remainder Theorem can be extended to moduli which are
coprime to each other.
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Problem 18. Comets 2P/Encke, 4P/Faye and 8P/Tuttle have orbital periods of 3

years, 8 years and 13 years respectively. The last perihelions (the point in the or-
bit which is closest to the sun) of each of these comets were in 2017, 2014 and 2008
respectively. What is the next year in which all three of these comets will achieve
perihelions in the same year?

We  wWoawny H8 SWWe

2 E 2O waod R
®E 3014 raod &
B 2oo% pasd 1B

Sh v T 0 20V3 ko 20W K C2:200B  waedk (B ¥ T
vt C

= 4
T Y weod 3 Cr "2 0 Pepdh 3 Q;g:QM@C‘X .
2 o wassh & T @\ vwod B @ O wwhock s
2 g wodld B oa wod 3 =y vasd
= B%%. - -

15l v OSR
W BB LOE & VS - 2oV % WOSY L 100% waed BV
Problem 19. What are the last two digits of 4997

Hint: We are looking for z such that z = 49" mod 100.
Furthermore, 100 = 25 - 4 and ged(25,4) = 1.
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