COUNTING AND SYMMETRY — Dpo T

INTEEMEDIATE GROUP NOVEMBER 20, 2016

Warm Up
Problem 1, Fill in the blanks.

(12— \woa¥

(2) 2¥0 =~ 10

1%
(3) 22% =~ 10
(4) 3.9%0 BMQ

(5) There are _\000 _exactly grams in a kilogram,
(6) There are _1900 exactly meters in a kilometer.

(7) There are _ Q4 exactly bites in a kilobyte.

(8) Can you think of a reason why bytes are represented in terms of powers of 27
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Problem 2. Summation Notation

(1) Write 3 1 ;445 « in its expanded form and calculate its value.

VYL Al oy

(2) Write >, 1,045 f(z) where f(z) = 2% in its expanded form and calculate its
value.
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(3) Describe what } .5, 27 represents in English.
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(4) Suppose that cis a constant and }___. f(z) = 20. Whatis > __, ¢+ f(z)?
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Orbits, Stabilizers and Fixed Colorings

Problem 3. Reviewing terms from last week.
(1) The set of all colorings that can be obtained from a given coloring by applying
symmetries is called its _oo\ai-k .
(2) The set of all symmetries that don’t change a given coloring is called its _=d-al 2

Definition 1. The fixed colorings of a symmetry, denoted Fixz(s), consists of all the
colorings that are not changed under symmetry s.

Problem 4. Suppose we're trying to color each panel of a 2 x 2 ornament using white
and black. Draw the fixed colorings for each of the symmetries of a 2 x 2 ornament
shown below. One of them has already been done for you.

(1D Fz':r.(f){ o\l (',C)\Q('\\*\aa | }

@) F-ia:(R)Z{ Ui\\ )%7/5\ }

(3)

f

g Ve
RN 7




LAMC handout | )

orer-{ HL Y iy

@ Fia(y) —{ 1

iy

ol

® Fis(i) =4




LAMC handout 5

Burnside’s Lemmma

Definition 2. We say that two colorings are essentially different if they cannot be
obtained from each other by a symmetry.

Recall from last week the Orbit-Stabilizer lemma, which states that
the number of symmetries = |S| = [O{x)| - |Stab(z)|.

This can be yewritten as 5

Ol = |Stab(z)|

Furthermore, we saw that

> [Stab(x)] = > |Fix(s)].

e X sesS

Problem 6. Give an intuitive explanation for why this is true.
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Thus, we can obtain the following:

# essentially different colorings = # equivalence classes
= # orbits
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Essentially Different Colorings of an 8 x 8 Chessboard

Problem 7. Suppose we're coloring the squares of an 8 x 8 chessbhoard using 2 colors.
We will find the number of essentially different colorings of the chesshoard.

We will refer to each square of the chesshoard using algebraic chess notation shown
in the figure below.

(1) List the symmetries of the chessboard. Notice that our chessboard is not trans-
parent. Therefore flips are not symmetries.

Sy el .

(2) Assuming that we are not taking symmetries into account, how many different
colorings are there?
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(3) Find |Fiz(1)].
4“%—1 gr‘vm@@\
L

(4) The following questions will help you find |Fiz(R)|, where R is the 90° clock-
wise rotation.

(a) Consider the square ol and mark it on the chessboard above.

(b) Mark all the squares that should be colored the same as al in order for the
coloring to be fixed by R.

(c) Repeat (a) and (b) for the squares b2 and c4.

(d) Notice that to create a coloring fixed by R, you can only decide the colors
of some squares. For example, if you decide the color of a1, the coloring of
three other squares will have already been decided for you.

Of the 64 squares on the chessboard, how many squares do you need to
decide the color of to create a coloring fixed by R?
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{e} Mark such a set of squares described in part (d)} in the chessboard below.
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(f) Using your answer from part (d), how many colorings of the chessboard
can you make that are fixed under ?

(5) Using the same thought process as above, find the following:
(@) [Fiz(R?)| = NP

(b) |Fiz(R)| =

(6) Using Burnside’s lemma, find the number of eésentiaﬂy different colorings of
the chesshoard. You can keep your answer as a sum of powers.
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{7) Using what you learned from the warm up, estimate the number of essentially
different colorings of the chessboard as a power of 10.

e //\- i \(j\;\’

(8) If you were to do the same problem but with 3 colors instead, what would your
answer be?
Hint: You do not need to go through all the steps above., You can get your
answer by modifying your answer from part (6) of this problem.
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Problem 8. Suppose we want to order a pizza that has 4 even slices. There are
two toppings to choose from: cheese and pepperoni, and we must choose exactly one
topping for each slice. How many distinct ways can we arrange the toppings on the
pizza?
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Problem 9. Suppose we have a bracelet with 4 beads on it, as shown below. The
beads can either be red, white or blue. How many essentially different ways can we
pick the colors of the beads?
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Problem 10. How many essentially different ways can we color a glass 4 x 4 grid
ornament with 5 colors?

A . % 4 \ oL e %,
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Problem 11. (Challenge) As part of showing Burnside’s we claimed that # Orbits =
5 . Show that this is true.

zeX |Ofx)]

Hint: To show this, break X, the set of all colorings, into groups of orbits. Then con-
sider a single orbit, O(z) = {zy, 25, ..., 7, }.
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What is =}~? What is 3,
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