Trigonometry

ORMC
05/19/24

1 Putnam and Beyond Problems

Problem 1.1. Find the range of the function $f(x)=(\sin (x)+1)(\cos (x)+1)$.
Hint: Turn this into a function of $\sin (x)+\cos (x)$, and find the range of that.
Problem 1.2. Prove that for all integers $n \geq 0$ and all $x \in\left(0, \frac{\pi}{2}\right)$,

$$
\sec ^{2 n}(x)+\csc ^{2 n}(x) \geq 2^{n+1}
$$

Hint: Combine basic trig identities with AM-GM.

1.1 Substitution

Often, algebra problems (particularly those involving square roots) are easier to solve if we think of our variables as trigonometric functions of other variables. This can give a geometric flavor to the problem, and allows us to use the algebra of trig identities.

Problem 1.3. Prove that

$$
\sqrt{a b}+\sqrt{(1-a)(1-b)} \leq 1 .
$$

Hint: Let a and b be functions of some angles α and β respectively, so that the left side turns into a trig function of α and β that is definitely at most 1 .

Problem 1.4. Let a, b, c be real numbers. Prove that

$$
(a b+b c+c a-1)^{2} \leq\left(a^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right) .
$$

Hint: The expression $x^{2}+1$ should basically always make you think "tangent".
Problem 1.5. Prove that

$$
27 \sin ^{3} 9^{\circ}+9 \sin ^{3} 27^{\circ}+3 \sin ^{3} 81^{\circ}+\sin ^{3} 243^{\circ}=20 \sin 9^{\circ}
$$

Hint: Find a triple-angle formula for $\sin (3 x)$.

2 Competition Problems

Problem 2.1 (BAMO 2014 Problem 3). Suppose that for two real numbers x and y the following equality is true:

$$
\left(x+\sqrt{1+x^{2}}\right)\left(y+\sqrt{1+y^{2}}\right)=1 .
$$

Find (with proof) the value of $x+y$.

Problem 2.2 (BAMO 2009 Problem 7). Let $\triangle A B C$ be an acute triangle with angles α, β, γ. Prove that

$$
\frac{\cos \alpha}{\cos (\beta-\gamma)}+\frac{\cos \beta}{\cos (\gamma-\alpha)}+\frac{\cos \gamma}{\cos (\alpha-\beta)} \geq \frac{3}{2}
$$

Problem 2.3. The area of square $A B C D$ is 196. Point E is inside the square, at the same distances from points D and C, and such that $\angle D E C=150^{\circ}$. What is the perimeter of $\triangle A B E$ equal to?

Problem 2.4 (USAMO 1992 Problem 2). Prove

$$
\frac{1}{\cos 0^{\circ} \cos 1^{\circ}}+\frac{1}{\cos 1^{\circ} \cos 2^{\circ}}+\cdots+\frac{1}{\cos 88^{\circ} \cos 89^{\circ}}=\frac{\cos 1^{\circ}}{\sin ^{2} 1^{\circ}}
$$

Geometric hint: Construct a triangle, broken up into 89 pieces, such that the area of each piece is proportional to a term of the sum.

Algebraic hint: Make this a telescoping sum.
Problem 2.5 (USAMO 1998 Problem 3). Let $a_{0}, \cdots a_{n}$ be real numbers in the interval $\left(0, \frac{\pi}{2}\right)$ such that

$$
\tan \left(a_{0}-\frac{\pi}{4}\right)+\tan \left(a_{1}-\frac{\pi}{4}\right)+\cdots+\tan \left(a_{n}-\frac{\pi}{4}\right) \geq n-1
$$

Prove that $\tan \left(a_{0}\right) \tan \left(a_{1}\right) \cdots \tan \left(a_{n}\right) \geq n^{n+1}$.
Hint: You'll want to use one of the most classic inequalities, and just a little bit of tangent addition formula. To simplify your calculations, let $y_{i}=\tan \left(a_{i}-\frac{\pi}{4}\right)$.

Problem 2.6 (USAMO 1980 Problem 3). $A+B+C$ is an integral multiple of $\pi . x, y$, and z are real numbers. If $x \sin (A)+y \sin (B)+z \sin (C)=x^{2} \sin (2 A)+y^{2} \sin (2 B)+z^{2} \sin (2 C)=0$, show that $x^{n} \sin (n A)+y^{n} \sin (n B)+z^{n} \sin (n C)=0$ for any positive integer n.

Hint: Make this a question about three complex numbers, and use the fact that

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

