OLGA RADKO MATH CIRCLE, SPRING 2024: ADVANCED 3

FERNANDO FIGUEROA AND JOAQUÍN MORAGA

Worksheet 6: Topics on Elliptic curves

Let \mathbb{F} be a field of characteristic different to 2 or 3 .
Let $x^{3}+a x+b$ be a cubic polynomial with coefficients in \mathbb{F} that has no repeated roots. Remember that an elliptic curve over \mathbb{F} is defined as the set of points (x, y) in \mathbb{F}^{2} satisfying the equation

$$
y^{2}=x^{3}+a x+b
$$

together with a single point denoted O and called the point at infinity.
For the following exercise, you may use that a polynomial $x^{3}+a x+b$ has repeated roots in \mathbb{F} if and only if it has common roots in \mathbb{F} with its derivative $3 x^{2}+a$.
Problem 6.1: Which of the following cubic polynomials have repeated roots:
(1) $x^{3}+x$ over \mathbb{Q}.
(2) $x^{3}-3 x+2$ over \mathbb{C}.
(3) $x^{3}+x+1$ over \mathbb{F}_{5}

Solution 6.1:

Choosing a curve and a point.

Once we have a fixed finite field \mathbb{F}_{q}, we can find an elliptic curve E and a point P on it in the following way:
(1) Let X, Y, A be random elements in \mathbb{F}_{q}, set $B:=Y^{2}-\left(X^{3}+A X\right)$
(2) If the cubic $x^{3}+A x+B$ has no repeated roots, one defines the elliptic curve to be $y^{2}=x^{3}+A x+B$, with point $P=(X, Y)$.

Problem 6.2:

For the following values of X, Y, A, check if the cubic polynomial $x^{3}+A x+B$ has repeated roots and verify that the point (X, Y) is in the elliptic curve.
(1) $X=1, Y=1, A=2$ over \mathbb{F}_{5}
(2) $X=2, Y=3, A=1$ over \mathbb{F}_{5}
(3) $X=1, Y=0, A=4$ over \mathbb{F}_{5}

Solution 6.2:

For the following exercise, you may use that a polynomial $x^{3}+a x+b$ has repeated roots in \mathbb{F} if and only if it has common roots in \mathbb{F} with its derivative $3 x^{2}+a$.
Problem 6.3: Show that a cubic polynomial $x^{3}+a x+b$ has repeated roots if and only if $4 a^{3}+27 b^{2}=0$.
Solution 6.3:

Let $(\mathbb{Z} / n \mathbb{Z})^{\times}$be the set of positive integers less than n that are coprime with n.
Remember that the RSA cryptosystem consists on the following steps:
(1) Picking a secret pair of prime numbers p, q. Define $n:=p q$
(2) Picking randomly an integer e coprime with $(p-1)(q-1)$. Define d to be such that $e d \equiv 1(\bmod (p-1)(q-1))$
(3) The public key consists on the elements (n, e). While the private key consists of the elements $((p-1)(q-1), d)$. To encrypt a message, i.e. a number $c \operatorname{in} \operatorname{in}(\mathbb{Z} / n \mathbb{Z})^{\times}$, one takes the d power. While the decryption algorithm consists of taking the e power.

Problem 6.4:

(1) Explain why this this algorithm recovers the original plaintext.
(2) Explain why this deciphering method would not work for numbers that are not coprime with n.

Solution 6.4:

The security of RSA relies on the difficulty of the logarithm problem, i.e. given an element g in a group (G, \cdot) and an integer r, finding an element such that $b^{r}=a$. We will see a similar problem with a group structure on elliptic curves.

Let us remember how the addition is defined over an elliptic curve.
Let E be an elliptic curve over \mathbb{R}, let P and Q be two points in E. We will define $P+Q$ and $-P$ by the following rules.
(1) If $P=O$, then $-P:=O$ and $P+Q:=Q$, so in the following cases we will assume that no point is the point at infinity.
(2) If the point P has coordinates (x, y), then the point $-P$ is given by the the coordinates $(x,-y)$
(3) If P and Q have different coordinates, then the line $l=\overline{P Q}$ intersects E at a third point R (in case l is tangent to E, we define R to be the point of tangency). We define $P+Q=-R$.
(4) If $Q=-P$, then $P+Q:=O$.
(5) If $P=Q$, then let l be the tangent line to E at P, let R be the third point of intersection of l and E. We define $P+Q:=-R$.
An example can be seen in the fpicture at the bottom of this page.
If E is an elliptic curve over \mathbb{F}_{q} and B is a point of E, then the discrete logarithm problem on E is the problem of, given a point P in E finding an integer x such that $x B=P$, if such an integer x exists.

Diffie-Hellmann Key Exchange

Alice and Bob want to agree on a common key that they can use for encrypting data. They will do the following steps:
(1) Alice and Bob agree on an elliptic curve E over a finite field \mathbb{F}_{q}. They also agree on a point P in the curve. These choices can be seen by everybody
(2) Alice chooses a secret integer a, computes $a P$, and sends it to Bob. Everybody can see $a P$.
(3) Bob chooses a secret integer b, computes $b P$ and sends it to Alice. Everybody can see $b P$.
(4) Bob and Alice secretly compute $a b P$ and this is the common key.

Diffie-Hellmann Problem.

The Diffie-Hellmann Problem consists on finding the common key defined by the Diffie-Hellman problem. In other words, given an elliptic curve E and points $P, a P$ and $b P$, finding $a b P$.

Decision Diffie-Hellmann Problem
The decision Diffie-Hellmann Problem consists on checking if a given element is the solution of the Diffie-Helmann Problem. In other words, given an elliptic curve E and points $P, a P, b P$ and Q, checking if $Q=a b P$.

Problem 6.5:

Explain why Bob and Alice can find the number $a b P$, but someone else would need to solve the logarithm problem to obtain $a b P$.

Solution 6.5:

ElGamal system on Elliptic curves

They will do the following steps:
(1) Alice and Bob agree on an elliptic curve E over a finite field \mathbb{F}_{q}. They also agree on a point P in the curve. (This can be though as public information to everybody)
(2) Bob chooses a secret integer b, computes $b P$, and shares it with everyone. ($b P$ is Bob' public key, and b is Bob's private key).
(3) To send a message M to Bob, Alice will choose a random integer k and send the pair $(k P, M+k(b P))$.

Problem 6.6:
How can Bob decipher the message sent by Alice?

Solution 6.6:

Variant of a signature scheme due to Nyberg and Rueppel.

Let E be an elliptic curve over \mathbb{F}_{q} and let N be the number of points of E. Alice has a message that she wants to sign. She represents the message as a point M in E. Alice has a secret integer a and makes public points A and B in E, with $B=a A$, as in the ElGamal signature scheme. There is a public function $f: E \rightarrow \mathbb{Z} / N \mathbb{Z}$. Alice performs the following steps.
(1) She chooses a random integer k with $\operatorname{gcd}(k, N)=1$.
(2) She computes $R=M-k A$
(3) She computes $s \equiv k^{-1}(1-f(R) a)(\bmod N)$
(4) The signed message is (M, R, s).

Bob verifies the signature as follows:
(1) He computes $V_{1}=s R-f(R) B$ and $V_{2}=s M-A$
(2) He declares the signature valid if $V_{1}=V_{2}$

Problem 6.7:

Show that if Alice performed the steps correctly, then the signatures V_{1} and V_{2} should be equal. Solution 6.7:

Problem 6.8:

Let E be the elliptic curve $y^{2}=x^{3}+a x+b$ over \mathbb{Q}, let $P=(x, y)$ be a point on E. Let p be a prime not dividing $4 a^{3}+27 b^{2}$ or the denominators of the x or y-coordinates of P.

Show that the the order of $P(\bmod p):=(x(\bmod p), y(\bmod p))$ on the elliptic curve $E(\bmod p)$ defined by the elliptic curve $y^{2}=x^{3}+a x+b$ over \mathbb{F}_{p} is the smallest integer k such that either:
(1) $k P=O$ in E
(2) p divides the denominator of the coordinates of $k P$.

Solution 6.8:

Let $x^{3}+a x+b$ be a polynomial with coefficients in \mathbb{F}, having three different solutions in \mathbb{F}. Let E be the elliptic curve associated to the polynomial $y^{2}=x^{3}+a x+b$ over \mathbb{F}.

Problem 6.9:

(1) Show that the elliptic curve E has exactly 3 elements of order 2. Hint: Elements of order 2 have a geometric characterization.
(2) Show that a cyclic group has 0 or 1 elements of order 2.
(3) Conclude that E is not a cyclic group.

Solution 6.9:

Let $\left(\frac{q}{p}\right)$ be the Legendre Symbol. Remember that this is defined to be 0 if p divides $q, 1$ if q has a square root modulo p and -1 otherwise.
Problem 6.10: Show that the number of points of an elliptic curve E with equation $y^{2}=x^{3}+a x+b$ over \mathbb{F}_{p} is :

$$
p+1+\sum_{x \text { in } \mathbb{F}_{p}}\left(\frac{x^{3}+a x+b}{p}\right)
$$

Solution 6.10:

Problem 6.11:
Show that there are $p+1$ points on the elliptic curve $y^{2}=x^{3}+b$ over \mathbb{F}_{p}, with $p \equiv 2(\bmod 3)$
Solution 6.11:

For the following problem you may use the fact that in a finite group, the order of any element divides the number of elements in the group.
Problem 6.12:
Show that the following Elliptic curves have cyclic group structure:
(1) $y^{2}=x^{3}+1$ over \mathbb{F}_{2}
(2) $y^{2}=x^{3}+1$ over \mathbb{F}_{5}
(3) $y^{2}=x^{3}+1$ over \mathbb{F}_{11}

Solution 6.12:

Challenge:

(1) Show that a polynomial $p(x)$ with coefficients in \mathbb{F} has repeated roots in \mathbb{F} if and only if $p(x)$ and its derivative $p^{\prime}(x)$ have a common root in \mathbb{F}.
(2) Can a polynomial with coefficients in \mathbb{R} have repeated complex roots, but no repeated real roots?
(3) Can a polynomial with rational coefficients have repeated real roots but no repeated rational root?

Solution :

UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: fzamora@math.princeton.edu
UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu

