Definable Sets

Prepared by Mark on July 27, 2023

Part 1: Logical Algebra

Definition 1:

Logical operators operate on the values {True, False}, just like algebraic operators operate on numbers.

In this handout, we'll use the following operators:

- ¬: not
- \wedge : and
- V: or
- \rightarrow : implies
- (), parenthesis.

The function of these is defined by truth tables:

and			or				implies			not			
\overline{A}	B	$A \wedge B$	_	\overline{A}	B	$A \lor B$	_	\overline{A}	B	$A \rightarrow B$		\overline{A}	$\neg A$
\overline{F}	F	F	_	F	F	F	_	F	F	Т		Т	F
\mathbf{F}	Т	F		F	Γ	${ m T}$		F	Τ	${ m T}$		\mathbf{F}	Γ
\mathbf{T}	F	F		\mathbf{T}	F	${ m T}$		Τ	F	F			
${ m T}$	T	Γ		Τ	$\mid T \mid$	Т		\mathbf{T}	\mathbf{T}	Τ			

 $A \wedge B$ is only true if both A and B are true. $A \vee B$ is true when A or B (or both) are true. $\neg A$ is the opposite of A, which is why it looks like a "negative" sign.

 $A \to B$ is a bit harder to understand. Read aloud, this is "A implies B."

The only time \rightarrow is false is when $T \rightarrow F$. This may seem counterintuitive, but it will make more sense as we progress through this handout.

Problem 2:

Evaluate the following.

- ¬T
- F ∨ T
- $T \wedge T$
- $(T \wedge F) \vee T$
- $(T \wedge F) \vee T$
- $(\neg (F \lor \neg T)) \to T$
- $(F \to T) \to (\neg F \lor \neg T)$

Problem 3:

Evaluate the following.

- $A \to T$ for any A
- $(\neg(A \to B)) \to A$ for any A, B
- $(A \to B) \to (\neg B \to \neg A)$ for any A, B

Problem 4:

Show that $\neg (A \to \neg B)$ is equivalent to $A \wedge B$.

That is, show that these give the same result for the same A and B.

Hint: Use a truth table

Problem 5:

Can you express $A \vee B$ using only \neg , \rightarrow , and ()?

Note that both \wedge and \vee can be defined using the other logical symbols.

The only logical symbols we need are \neg , \rightarrow , and ().

We include \wedge and \vee to simplify our logical expressions.

Part 2: Structures

Definition 6:

A universe is a set of meaningless objects. Here are a few examples:

- $\{a, b, ..., z\}$
- {0,1}
- \mathbb{Z} , \mathbb{R} , etc.

Definition 7:

A structure consists of a universe U and a set of symbols.

A structure's symbols give meaning to the objects in its universe.

Symbols come in three types:

- Constant symbols, which let us specify specific elements of our universe. Examples: $0, 1, \frac{1}{2}, \pi$
- Function symbols, which let us navigate between elements of our universe. Examples: $+, \times, \sin x, \sqrt{x}$
- Relation symbols, which let us compare elements of our universe. Examples: $<,>,\leq,\geq$

The equality check = is **not** a relation symbol. It is included in every structure by default.

Example 8:

The first structure we'll look at is the following:

$$\Big(\mathbb{Z} \mid \{0,1,+,-,<\}\Big)$$

This is a structure with the universe \mathbb{Z} that contains the following symbols:

- Constants: $\{0,1\}$ • Functions: $\{+,-\}$
- Relations: $\{<\}$

If you look at our set of constant symbols, you'll see that the only integers we can directly refer to in this structure are 0 and 1. If we want any others, we must define them using the tools this structure offers.

3

Say we want the number 2. We could use the function + to define it: 2 := [x where 1 + 1 = x]We would write this as 2 := [x where + (1,1) = x] in proper "functional" notation.

Problem 9:

Can we define -1 in $(\mathbb{Z} \mid \{0,1,+,-,<\})$? If so, how?

Problem 10:

Can we define -1 in $(\mathbb{Z} \mid \{0,+,-,<\})$?

Hint: In this problem, 1 has been removed from the set of constant symbols.

Let us formalize what we found in the previous two problems.

Definition 11:

A formula in a structure S is a well-formed string of constants, functions, and relations.

You already know what a "well-formed" string is: 1+1 is fine, $\sqrt{+}$ is nonsense.

For the sake of time, I will not provide a formal definition. It isn't particularly interesting.

A formula can contain one or more free variables. These are denoted $\varphi(a, b, ...)$.

Formulas with free variables let us define "properties" that certain objects have.

For example, x is a free variable in the formula $\varphi(x) = [x > 0]$. $\varphi(3)$ is true and $\varphi(-3)$ is false.

Definition 12: Definable Elements

Say S is a structure with a universe U.

We say an element $e \in U$ is definable in S if we can write a formula that only e satisfies.

Problem 13:

Can we define 2 in the structure
$$(\mathbb{Z}^+ \mid \{4, \times\})$$
?
Hint: $\mathbb{Z}^+ = \{1, 2, 3, ...\}$. Also, $2 \times 2 = 4$.

Hint:
$$\mathbb{Z}^+ = \{1, 2, 3, ...\}$$
. Also, $2 \times 2 = 4$.

Problem 14:

Try to define 2 in the structure
$$(\mathbb{Z} \mid \{4, \times\})$$
.

Problem 15:

Problem 15: What numbers are definable in the structure $(\mathbb{R}_0^+ \mid \{1, 2, \div\})$?

Part 3: Quantifiers

Recall the logical symbols we introduced earlier: $(), \land, \lor, \neg, \rightarrow$ We will now add two more: \forall (for all) and \exists (exists).

Definition 16:

 \forall and \exists are quantifiers. They allow us to make statements about arbitrary symbols.

Let's look at \forall first. Let $\varphi(x)$ be a formula.

Then, the formula $\forall x \ \varphi(x)$ says " φ is true for all possible x."

For example, take the formula $\forall x \ (0 < x)$.

In English, this means "For any x, x is bigger than zero," or simply "Any x is positive."

 \exists is very similar: the formula $\exists x \ \varphi(x)$ states that there is at least one x that makes φ true. For example, $\exists \ (0 < x)$ means "there is a positive number in our set".

Problem 17:

Which of the following are true in \mathbb{Z} ?

Which are true in \mathbb{R}_0^+ ?

Hint: \mathbb{R}_0^+ is the set of positive real numbers and zero.

- $\forall x \ (x \geq 0)$
- $\neg(\exists x \ (x=0))$
- $\forall x \ [\exists y \ (y \times y = x)]$
- $\forall xy \; \exists z \; (x < z < y)$ This is a compact way to write $\forall x \; (\forall y \; (\exists z \; (x < z < y)))$
- $\neg \exists x \ (\forall y \ (x < y))$

Problem 18:

Does the order of \forall and \exists in a formula matter?

What's the difference between $\exists x \ \forall y \ (x < y)$ and $\forall y \ \exists x \ (x < y)$?

Hint: In \mathbb{R}^+ , the first is false and the second is true. \mathbb{R}^+ does not contain zero.

Problem 19: Define 0 in $(\mathbb{Z} \mid \{ \times \})$

Problem 20: Define 1 in $(\mathbb{Z} \mid \{\times\})$

Problem 21: Define
$$-1$$
 in $(\mathbb{Z} \mid \{0, <\})$

Problem 22:

Let $\varphi(x)$ be a formula. Define $(\forall x \ \varphi(x))$ using logical symbols and \exists .

Part 4: Definable Sets

Armed with $(), \land, \lor, \neg, \rightarrow, \forall$, and \exists , we have enough tools to define sets.

Definition 23: Set-Builder Notation

Say we have a condition c.

The set of all elements that satisfy that condition can be written as follows:

$$\{x \mid c \text{ is true}\}$$

This is read "The set of x where c is true" or "The set of x that satisfy c."

For example, take the formula $\varphi(x) = \exists y \ (y + y = x)$.

The set of all even integers can then be written

$$\{x \mid \varphi(x)\} = \{x \mid \exists y \ (y+y=x)\}\$$

Definition 24: Definable Sets

Let S be a structure with a universe U.

We say a subset M of U is definable if we can write a formula that is true for some x iff $x \in M$.

For example, consider the structure $\Big(\mathbb{Z}\ \big|\ \{+\}\Big)$

Only even numbers satisfy the formula $\varphi(x) = \exists y \ (y + y = x)$,

So we can define "the set of even numbers" as $\{x \mid \exists y \ (y+y=x)\}.$

Remember—we can only use symbols that are available in our structure!

Problem 25:

Is the empty set definable in any structure?

Problem 26:

Define $\{0,1\}$ in $\left(\mathbb{Z}_0^+ \mid \{<\}\right)$

Problem 27:

Define the set of prime numbers in $(\mathbb{Z} \mid \{\times, \div, <\})$

Problem 28:

Define the set of nonreal numbers in $(\mathbb{C} \mid \{\text{real}(z)\})$ Hint : $\mathrm{real}(z)$ gives the real part of a complex number: $\mathrm{real}(3+2i)=3$

Hint: z is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$

Problem 29: Define \mathbb{R}_0^+ in $\Big(\mathbb{R} \mid \{\times\}\Big)$

Problem 30:

Let \triangle be a relational symbol. $a \triangle b$ holds iff a divides b.

Define the set of prime numbers in $(\mathbb{Z}^+ \mid \{\triangle\})$

Theorem 31: Lagrange's Four Square Theorem

Every natural number may be written as a sum of four integer squares.

Problem 32: Define \mathbb{Z}_0^+ in $\Big(\mathbb{Z} \mid \{\times, +\}\Big)$

Problem 33: Define < in $(\mathbb{Z} \mid \{\times, +\})$

Hint: We can't formally define a relation yet. Don't worry about that for now.

You can repharase this question as "given $a, b \in \mathbb{Z}$, can you write a sentence that is true iff a < b?"

Problem 34:

Consider the structure $S = (\mathbb{R} \mid \{0, \diamond\})$ The relation $a \diamond b$ holds if |a - b| = 1

Part 1:

Define 0 in S.

Part 2:

Define $\{-1,1\}$ in S.

Part 3:

Define $\{-2,2\}$ in S.

Problem 35:

Let P be the set of all subsets of \mathbb{Z}_0^+ . This is called a *power set*. Let S be the stucture $(P \mid \{\subseteq\})$

Part 1:

Show that the empty set is definable in S.

Hint: Defining $\{\}$ with $\{x \mid x \neq x\}$ is **not** what we need here. We need $\emptyset \in P$, the "empty set" element in the power set of \mathbb{Z}_0^+ .

Part 2:

Let $x \approx y$ be a relation on P. $x \approx y$ holds if $x \cap y \neq \{\}$. Show that \approx is definable in S.

Part 3

Let f be a function on P defined by $f(x) = \mathbb{Z}_0^+ - x$. This is called the *complement* of the set x. Show that f is definable in S.

Part 5: Equivalence

Notation:

Let S be a structure and φ a formula.

If φ is true in S, we write $S \models \varphi$.

This is read "S satisfies φ "

Definition 36:

Let S and T be structures.

We say S and T are equivalent and write $S \equiv T$ if for any formula φ , $S \models \varphi \Longleftrightarrow T \models \varphi$. If S and T are not equivalent, we write $S \not\equiv T$.

Problem 37: Show that $(\mathbb{Z} \mid \{+,0\}) \not\equiv (\mathbb{R} \mid \{+,0\})$

Problem 38: Show that $(\mathbb{Z} \mid \{+,0\}) \not\equiv (\mathbb{N} \mid \{+,0\})$

Problem 39: Show that $(\mathbb{R} \mid \{+,0\}) \not\equiv (\mathbb{N} \mid \{+,0\})$

Problem 40: Show that $(\mathbb{R} \mid \{+,0\}) \not\equiv (\mathbb{Z}^2 \mid \{+,0\})$

Problem 41: Show that $(\mathbb{Z} \mid \{+,0\}) \not\equiv (\mathbb{Z}^2 \mid \{+,0\})$